(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
lastbit(0) → 0
lastbit(s(0)) → s(0)
lastbit(s(s(x))) → lastbit(x)
zero(0) → true
zero(s(x)) → false
conv(x) → conviter(x, cons(0, nil))
conviter(x, l) → if(zero(x), x, l)
if(true, x, l) → l
if(false, x, l) → conviter(half(x), cons(lastbit(x), l))

Rewrite Strategy: FULL

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
lastbit(0') → 0'
lastbit(s(0')) → s(0')
lastbit(s(s(x))) → lastbit(x)
zero(0') → true
zero(s(x)) → false
conv(x) → conviter(x, cons(0', nil))
conviter(x, l) → if(zero(x), x, l)
if(true, x, l) → l
if(false, x, l) → conviter(half(x), cons(lastbit(x), l))

S is empty.
Rewrite Strategy: FULL

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

TRS:
Rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
lastbit(0') → 0'
lastbit(s(0')) → s(0')
lastbit(s(s(x))) → lastbit(x)
zero(0') → true
zero(s(x)) → false
conv(x) → conviter(x, cons(0', nil))
conviter(x, l) → if(zero(x), x, l)
if(true, x, l) → l
if(false, x, l) → conviter(half(x), cons(lastbit(x), l))

Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lastbit :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
conv :: 0':s → nil:cons
conviter :: 0':s → nil:cons → nil:cons
cons :: 0':s → nil:cons → nil:cons
nil :: nil:cons
if :: true:false → 0':s → nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
hole_nil:cons3_0 :: nil:cons
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
half, lastbit, conviter

They will be analysed ascendingly in the following order:
half < conviter
lastbit < conviter

(6) Obligation:

TRS:
Rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
lastbit(0') → 0'
lastbit(s(0')) → s(0')
lastbit(s(s(x))) → lastbit(x)
zero(0') → true
zero(s(x)) → false
conv(x) → conviter(x, cons(0', nil))
conviter(x, l) → if(zero(x), x, l)
if(true, x, l) → l
if(false, x, l) → conviter(half(x), cons(lastbit(x), l))

Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lastbit :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
conv :: 0':s → nil:cons
conviter :: 0':s → nil:cons → nil:cons
cons :: 0':s → nil:cons → nil:cons
nil :: nil:cons
if :: true:false → 0':s → nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
hole_nil:cons3_0 :: nil:cons
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))

The following defined symbols remain to be analysed:
half, lastbit, conviter

They will be analysed ascendingly in the following order:
half < conviter
lastbit < conviter

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
half(gen_0':s4_0(*(2, n7_0))) → gen_0':s4_0(n7_0), rt ∈ Ω(1 + n70)

Induction Base:
half(gen_0':s4_0(*(2, 0))) →RΩ(1)
0'

Induction Step:
half(gen_0':s4_0(*(2, +(n7_0, 1)))) →RΩ(1)
s(half(gen_0':s4_0(*(2, n7_0)))) →IH
s(gen_0':s4_0(c8_0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

TRS:
Rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
lastbit(0') → 0'
lastbit(s(0')) → s(0')
lastbit(s(s(x))) → lastbit(x)
zero(0') → true
zero(s(x)) → false
conv(x) → conviter(x, cons(0', nil))
conviter(x, l) → if(zero(x), x, l)
if(true, x, l) → l
if(false, x, l) → conviter(half(x), cons(lastbit(x), l))

Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lastbit :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
conv :: 0':s → nil:cons
conviter :: 0':s → nil:cons → nil:cons
cons :: 0':s → nil:cons → nil:cons
nil :: nil:cons
if :: true:false → 0':s → nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
hole_nil:cons3_0 :: nil:cons
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Lemmas:
half(gen_0':s4_0(*(2, n7_0))) → gen_0':s4_0(n7_0), rt ∈ Ω(1 + n70)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))

The following defined symbols remain to be analysed:
lastbit, conviter

They will be analysed ascendingly in the following order:
lastbit < conviter

(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
lastbit(gen_0':s4_0(*(2, n317_0))) → gen_0':s4_0(0), rt ∈ Ω(1 + n3170)

Induction Base:
lastbit(gen_0':s4_0(*(2, 0))) →RΩ(1)
0'

Induction Step:
lastbit(gen_0':s4_0(*(2, +(n317_0, 1)))) →RΩ(1)
lastbit(gen_0':s4_0(*(2, n317_0))) →IH
gen_0':s4_0(0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(11) Complex Obligation (BEST)

(12) Obligation:

TRS:
Rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
lastbit(0') → 0'
lastbit(s(0')) → s(0')
lastbit(s(s(x))) → lastbit(x)
zero(0') → true
zero(s(x)) → false
conv(x) → conviter(x, cons(0', nil))
conviter(x, l) → if(zero(x), x, l)
if(true, x, l) → l
if(false, x, l) → conviter(half(x), cons(lastbit(x), l))

Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lastbit :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
conv :: 0':s → nil:cons
conviter :: 0':s → nil:cons → nil:cons
cons :: 0':s → nil:cons → nil:cons
nil :: nil:cons
if :: true:false → 0':s → nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
hole_nil:cons3_0 :: nil:cons
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Lemmas:
half(gen_0':s4_0(*(2, n7_0))) → gen_0':s4_0(n7_0), rt ∈ Ω(1 + n70)
lastbit(gen_0':s4_0(*(2, n317_0))) → gen_0':s4_0(0), rt ∈ Ω(1 + n3170)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))

The following defined symbols remain to be analysed:
conviter

(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol conviter.

(14) Obligation:

TRS:
Rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
lastbit(0') → 0'
lastbit(s(0')) → s(0')
lastbit(s(s(x))) → lastbit(x)
zero(0') → true
zero(s(x)) → false
conv(x) → conviter(x, cons(0', nil))
conviter(x, l) → if(zero(x), x, l)
if(true, x, l) → l
if(false, x, l) → conviter(half(x), cons(lastbit(x), l))

Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lastbit :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
conv :: 0':s → nil:cons
conviter :: 0':s → nil:cons → nil:cons
cons :: 0':s → nil:cons → nil:cons
nil :: nil:cons
if :: true:false → 0':s → nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
hole_nil:cons3_0 :: nil:cons
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Lemmas:
half(gen_0':s4_0(*(2, n7_0))) → gen_0':s4_0(n7_0), rt ∈ Ω(1 + n70)
lastbit(gen_0':s4_0(*(2, n317_0))) → gen_0':s4_0(0), rt ∈ Ω(1 + n3170)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))

No more defined symbols left to analyse.

(15) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s4_0(*(2, n7_0))) → gen_0':s4_0(n7_0), rt ∈ Ω(1 + n70)

(16) BOUNDS(n^1, INF)

(17) Obligation:

TRS:
Rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
lastbit(0') → 0'
lastbit(s(0')) → s(0')
lastbit(s(s(x))) → lastbit(x)
zero(0') → true
zero(s(x)) → false
conv(x) → conviter(x, cons(0', nil))
conviter(x, l) → if(zero(x), x, l)
if(true, x, l) → l
if(false, x, l) → conviter(half(x), cons(lastbit(x), l))

Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lastbit :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
conv :: 0':s → nil:cons
conviter :: 0':s → nil:cons → nil:cons
cons :: 0':s → nil:cons → nil:cons
nil :: nil:cons
if :: true:false → 0':s → nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
hole_nil:cons3_0 :: nil:cons
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Lemmas:
half(gen_0':s4_0(*(2, n7_0))) → gen_0':s4_0(n7_0), rt ∈ Ω(1 + n70)
lastbit(gen_0':s4_0(*(2, n317_0))) → gen_0':s4_0(0), rt ∈ Ω(1 + n3170)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))

No more defined symbols left to analyse.

(18) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s4_0(*(2, n7_0))) → gen_0':s4_0(n7_0), rt ∈ Ω(1 + n70)

(19) BOUNDS(n^1, INF)

(20) Obligation:

TRS:
Rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
lastbit(0') → 0'
lastbit(s(0')) → s(0')
lastbit(s(s(x))) → lastbit(x)
zero(0') → true
zero(s(x)) → false
conv(x) → conviter(x, cons(0', nil))
conviter(x, l) → if(zero(x), x, l)
if(true, x, l) → l
if(false, x, l) → conviter(half(x), cons(lastbit(x), l))

Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
lastbit :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
conv :: 0':s → nil:cons
conviter :: 0':s → nil:cons → nil:cons
cons :: 0':s → nil:cons → nil:cons
nil :: nil:cons
if :: true:false → 0':s → nil:cons → nil:cons
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
hole_nil:cons3_0 :: nil:cons
gen_0':s4_0 :: Nat → 0':s
gen_nil:cons5_0 :: Nat → nil:cons

Lemmas:
half(gen_0':s4_0(*(2, n7_0))) → gen_0':s4_0(n7_0), rt ∈ Ω(1 + n70)

Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
gen_nil:cons5_0(0) ⇔ nil
gen_nil:cons5_0(+(x, 1)) ⇔ cons(0', gen_nil:cons5_0(x))

No more defined symbols left to analyse.

(21) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s4_0(*(2, n7_0))) → gen_0':s4_0(n7_0), rt ∈ Ω(1 + n70)

(22) BOUNDS(n^1, INF)